If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9(x^2)=78
We move all terms to the left:
4.9(x^2)-(78)=0
a = 4.9; b = 0; c = -78;
Δ = b2-4ac
Δ = 02-4·4.9·(-78)
Δ = 1528.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1528.8}}{2*4.9}=\frac{0-\sqrt{1528.8}}{9.8} =-\frac{\sqrt{}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1528.8}}{2*4.9}=\frac{0+\sqrt{1528.8}}{9.8} =\frac{\sqrt{}}{9.8} $
| 3(2x-5)=-0.5(-12x+30) | | 55.00+8.50n=123 | | 9x-11+3x=11x+8 | | 10x-5x-36=0 | | (7x+5)+98=180 | | (7x-13)+(6x+8)=180 | | 1.27-2p=-0.05 | | (2x-15)+59=180 | | -7+p=-2 | | -2.19(h+-8)=13.14 | | 9-()x3=45 | | 2(2x+x)-5=7x-1 | | 4(x+3)-4=8(1^2x+1 | | 1.8k=5.75 | | (-5+13x)+(24x)=180 | | 5y-9=3y+39 | | 8x-3=64x | | 4x+23=2x+33 | | 4x(1/4)=x | | 2^2x+1-5(2^x)+2=0 | | 12000=(x+0.15x) | | -5x-4=-3x+18 | | 1x+142=180 | | 8^x-3=64^x | | 4y-7=y+5 | | 27+8m=5m | | -5y+35=2y | | H=d/3+2 | | (8x+6)+(4x+30)=180 | | N+(n+2)+(n+4)=117 | | (4x+9)=(5x-27) | | (4x+9)+(5x-27)=180 |